Step 1: The standard Gibbs free energy change \( \Delta G^\circ \) is related to the standard cell potential \( E^\circ_{\text{cell}} \) by the equation:
\[
\Delta G^\circ = -n F E^\circ_{\text{cell}}
\]
Where:
- \( n \) is the number of moles of electrons transferred.
- \( F \) is the Faraday constant (\( 96485 \, \text{C/mol} \)).
- \( E^\circ_{\text{cell}} \) is the standard cell potential.
Step 2: Calculate \( E^\circ_{\text{cell}} \). For the cell reaction:
\[
E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}
\]
Here:
- The cathode is where reduction occurs (Cd\(^{2+}\) to Cd).
- The anode is where oxidation occurs (Sn to Sn\(^{2+}\)).
\[
E^\circ_{\text{cell}} = E^\circ_{\text{Cd}} - E^\circ_{\text{Sn}} = (-0.403 \, \text{V}) - (-0.136 \, \text{V}) = -0.403 + 0.136 = -0.267 \, \text{V}
\]
Step 3: For this reaction, 2 electrons are transferred (\( n = 2 \)).
Step 4: Now calculate the Gibbs free energy change:
\[
\Delta G^\circ = -2 \times 96485 \times (-0.267) \, \text{J/mol}
\]
\[
\Delta G^\circ = 2 \times 96485 \times 0.267 = 51571.5 \, \text{J/mol} = 51.57 \, \text{kJ/mol}
\]
Thus, the standard Gibbs energy change is:
\[
\boxed{\Delta G^\circ = 51.57 \, \text{kJ/mol}}
\]