Let the percentage abundance of the lighter isotope (\( \mathrm{^{10}B} \)) be \( x \%\). Then the percentage abundance of the heavier isotope (\( \mathrm{^{11}B} \)) will be \( (100 - x)\%\).
The average atomic mass of boron is given by:
\[
\text{Average atomic mass} = \frac{(x \cdot 10) + ((100 - x) \cdot 11)}{100}.
\]
Substitute the given average atomic mass \( 10.81 \):
\[
10.81 = \frac{(x \cdot 10) + ((100 - x) \cdot 11)}{100}.
\]
Simplify:
\[
10.81 = \frac{10x + 1100 - 11x}{100}.
\]
Combine like terms:
\[
10.81 = \frac{1100 - x}{100}.
\]
Multiply through by 100:
\[
1081 = 1100 - x.
\]
Solve for \( x \):
\[
x = 1100 - 1081 = 19.
\]
Thus, the abundance of the lighter isotope is \( \mathbf{19\%} \).