Step 1: Let the bond dissociation energies be expressed using the given ratio.
Given ratio:
\[
D_{XY} : D_{X_2} : D_{Y_2} = 1 : 1 : 0.5
\]
Let:
\[
D_{XY} = D,\quad D_{X_2} = D,\quad D_{Y_2} = 0.5D
\]
Step 2: Write the expression for enthalpy of formation of \(XY\).
Formation reaction:
\[
\frac{1}{2}X_2 + \frac{1}{2}Y_2 \rightarrow XY
\]
\[
\Delta H_f = \text{Bonds broken} - \text{Bonds formed}
\]
\[
\Delta H_f
= \left(\frac{1}{2}D_{X_2} + \frac{1}{2}D_{Y_2}\right) - D_{XY}
\]
Step 3: Substitute the bond energies.
\[
\Delta H_f
= \left(\frac{1}{2}D + \frac{1}{2}(0.5D)\right) - D
\]
\[
= (0.5D + 0.25D) - D
\]
\[
= -0.25D
\]
Step 4: Use the given value of \(\Delta H_f\).
\[
-0.25D = -200
\]
\[
D = 800\ \text{kJ mol}^{-1}
\]
Step 5: Identify the required quantity.
\[
D_{X_2} = D = 800\ \text{kJ mol}^{-1}
\]
Hence, the bond dissociation energy of \(X_2\) is
\[
\boxed{800\ \text{kJ mol}^{-1}}
\]