We are given the equation:
\[
5^x + 5^y = 5^{x + y}.
\]
To find \( \frac{dy}{dx} \), we will differentiate both sides with respect to \( x \) using implicit differentiation.
Step 1: Differentiate the left-hand side.
Using the chain rule, the derivatives of \( 5^x \) and \( 5^y \) are:
\[
\frac{d}{dx} \left( 5^x \right) = 5^x \ln 5 \quad \text{and} \quad \frac{d}{dx} \left( 5^y \right) = 5^y \ln 5 \cdot \frac{dy}{dx}.
\]
So, the derivative of the left-hand side becomes:
\[
5^x \ln 5 + 5^y \ln 5 \cdot \frac{dy}{dx}.
\]
Step 2: Differentiate the right-hand side.
For \( 5^{x + y} \), use the chain rule:
\[
\frac{d}{dx} \left( 5^{x + y} \right) = 5^{x + y} \ln 5 \cdot \left( 1 + \frac{dy}{dx} \right).
\]
Step 3: Set up the equation.
Equating the derivatives of the left-hand and right-hand sides:
\[
5^x \ln 5 + 5^y \ln 5 \cdot \frac{dy}{dx} = 5^{x + y} \ln 5 \cdot \left( 1 + \frac{dy}{dx} \right).
\]
Step 4: Simplify and solve for \( \frac{dy}{dx} \).
Divide through by \( \ln 5 \) (since \( \ln 5 \neq 0 \)):
\[
5^x + 5^y \cdot \frac{dy}{dx} = 5^{x + y} \cdot \left( 1 + \frac{dy}{dx} \right).
\]
Expand the right-hand side:
\[
5^x + 5^y \cdot \frac{dy}{dx} = 5^{x + y} + 5^{x + y} \cdot \frac{dy}{dx}.
\]
Rearrange to isolate terms involving \( \frac{dy}{dx} \):
\[
5^y \cdot \frac{dy}{dx} - 5^{x + y} \cdot \frac{dy}{dx} = 5^{x + y} - 5^x.
\]
Factor out \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} \cdot \left( 5^y - 5^{x + y} \right) = 5^{x + y} - 5^x.
\]
Solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{5^{x + y} - 5^x}{5^y - 5^{x + y}}.
\]
Final Answer:
\[
\boxed{\frac{dy}{dx} = \frac{5^{x + y} - 5^x}{5^y - 5^{x + y}}}.
\]