Step 1: Use Raoult’s Law. Raoult's Law for a solution of non-volatile solute: \[ P_{\text{solution}} = \chi_{\text{solvent}} \cdot P^0 \] Where:
- \(P_{\text{solution}} = 34.65 \, \text{mm Hg}\)
- \(\chi_{\text{solute}} = 0.02 \Rightarrow \chi_{\text{solvent}} = 1 - 0.02 = 0.98\)
- \(P^0 =\) vapour pressure of pure water
Step 2: Solve for \(P^0\). \[ 34.65 = 0.98 \cdot P^0 \Rightarrow P^0 = \frac{34.65}{0.98} \approx 35.36 \, \text{mm Hg} \]
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.