Step 1: Define the congruences.
We are told:
\[
x \equiv 1 \pmod{3}, \quad x \equiv 1 \pmod{4}, \quad x \equiv 1 \pmod{5}, \quad x \equiv 1 \pmod{6}, \quad x \equiv 0 \pmod{7}
\]
Step 2: Combine the first four congruences.
Since \(x\) leaves a remainder of 1 when divided by 3, 4, 5, or 6, we find the LCM of these numbers:
\[
\text{LCM}(3, 4, 5, 6) = 60
\]
So, \(x \equiv 1 \pmod{60} \Rightarrow x = 60k + 1\)
Step 3: Apply the condition \(x \equiv 0 \pmod{7}\)
Substitute:
\[
60k + 1 \equiv 0 \pmod{7} \Rightarrow 60k \equiv -1 \pmod{7} \Rightarrow 4k \equiv 6 \pmod{7}
\]
Multiply both sides by the inverse of 4 modulo 7, which is 2:
\[
k \equiv 12 \equiv 5 \pmod{7} \Rightarrow k = 7m + 5
\Rightarrow x = 60(7m + 5) + 1 = 420m + 301
\]
Step 4: Smallest value for \(x\)
For \(m = 0\), \(x = 301\), which satisfies all the conditions.