Question:

Arrange the following rational numbers in ascending order:
(A) \(-\frac{4}{5}\)
(B) \(-\frac{5}{12}\)
(C) \(-\frac{7}{18}\)
(D) \(-\frac{2}{3}\)
Choose the correct answer from the options given below

Updated On: Dec 22, 2025
  • (A), (B), (D), (C)
  • (C), (D), (B), (A)
  • (A), (D), (B). (C)
  • (D), (C), (B), (A)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To arrange the given rational numbers in ascending order, we first need to compare them. The numbers are: \(-\frac{4}{5}\)\(-\frac{5}{12}\)\(-\frac{7}{18}\)\(-\frac{2}{3}\).

To make the comparison easier, let's convert all the fractions to have a common denominator. The least common multiple (LCM) of the denominators 5, 12, 18, and 3 is 180. 

  1. Convert \(-\frac{4}{5}\):
    • \(-\frac{4}{5} = -\frac{4 \times 36}{5 \times 36} = -\frac{144}{180}\)
  2. Convert \(-\frac{5}{12}\):
    • \(-\frac{5}{12} = -\frac{5 \times 15}{12 \times 15} = -\frac{75}{180}\)
  3. Convert \(-\frac{7}{18}\):
    • \(-\frac{7}{18} = -\frac{7 \times 10}{18 \times 10} = -\frac{70}{180}\)
  4. Convert \(-\frac{2}{3}\):
    • \(-\frac{2}{3} = -\frac{2 \times 60}{3 \times 60} = -\frac{120}{180}\)

Now, we have the fractions with a common denominator: \(-\frac{144}{180}\)\(-\frac{75}{180}\)\(-\frac{70}{180}\)\(-\frac{120}{180}\).

Next, we arrange these fractions in ascending order. Since all are negative, the fraction with the smallest absolute value is the greatest (least negative value):

  • \(-\frac{70}{180}\) 
    (C) \(-\frac{7}{18}\)
  • \(-\frac{75}{180}\) 
    (D) \(-\frac{5}{12}\)
  • \(-\frac{120}{180}\) 
    (B) \(-\frac{2}{3}\)
  • \(-\frac{144}{180}\) 
    (A) \(-\frac{4}{5}\)

Therefore, the correct order is: \(-\frac{7}{18}, -\frac{5}{12}, -\frac{2}{3}, -\frac{4}{5}\)

Hence, the correct answer is

(C), (D), (B), (A)

.

 

Was this answer helpful?
0
0