Step 1: Given data:
Density \( \rho = 870 \, {kg/m}^3 \),
Viscosity \( \mu = 0.036 \, {Pa.s} \),
Diameter \( D = 0.1 \, {m} \),
Length \( L = 1.5 \, {km} = 1500 \, {m} \),
Flow rate \( Q = 250 \, {L/min} = \frac{250}{1000 \times 60} = \frac{1}{240} \, {m}^3/{s} \),
Total head loss = 11.60 m,
Acceleration due to gravity \( g = 10 \, {m/s}^2 \)
Step 2: Velocity in the pipe:
\[
A = \frac{\pi D^2}{4} = \frac{\pi (0.1)^2}{4} = \frac{\pi}{400} \, {m}^2
V = \frac{Q}{A} = \frac{1/240}{\pi/400} = \frac{400}{240\pi} \approx 0.53 \, {m/s}
\]
Step 3: Calculate Reynolds number:
\[
Re = \frac{\rho V D}{\mu} = \frac{870 \cdot 0.53 \cdot 0.1}{0.036} \approx 1279.17
\]
Since \( Re<2000 \), the flow is laminar.
Step 4: Head loss due to pipe (major loss):
For laminar flow, Darcy's friction factor \( f = \frac{64}{Re} \approx \frac{64}{1279.17} \approx 0.050 \)
Using Darcy–Weisbach equation:
\[
h_f = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g}
h_f = 0.050 \cdot \frac{1500}{0.1} \cdot \frac{(0.53)^2}{2 \cdot 10} \approx 10.7 \, {m}
\]
Step 5: Minor head loss due to valve:
\[
h_{{minor}} = h_{{total}} - h_{{major}} = 11.60 - 10.7 = 0.90 \, {m}
\]