\( \left[ u^2 - \frac{19Gm}{10R} \right]^{\frac{1}{2}} \)
Step 1: Apply Energy Conservation The total mechanical energy at a distance \( 20R \) from the planet’s center is: \[ E_{\text{initial}} = \frac{1}{2} m u^2 - \frac{GMm}{20R} \] At the surface (\( R \)), the energy is: \[ E_{\text{final}} = \frac{1}{2} m v^2 - \frac{GMm}{R} \] Applying the conservation of energy: \[ \frac{1}{2} m u^2 - \frac{GMm}{20R} = \frac{1}{2} m v^2 - \frac{GMm}{R} \]
Step 2: Solve for \( v \) Rearranging: \[ \frac{1}{2} m v^2 = \frac{1}{2} m u^2 + \frac{GMm}{R} - \frac{GMm}{20R} \] \[ \frac{1}{2} m v^2 = \frac{1}{2} m u^2 + \frac{19GMm}{20R} \] Dividing by \( m \) and multiplying by 2: \[ v^2 = u^2 + \frac{38GM}{20R} \] \[ v^2 = u^2 + \frac{19GM}{10R} \] Taking the square root: \[ v = \left[ u^2 + \frac{19GM}{10R} \right]^{\frac{1}{2}} \] Thus, the velocity with which the object hits the surface of the planet is: \[ \mathbf{\left[ u^2 + \frac{19GM}{10R} \right]^{\frac{1}{2}}} \]
The driver sitting inside a parked car is watching vehicles approaching from behind with the help of his side view mirror, which is a convex mirror with radius of curvature \( R = 2 \, \text{m} \). Another car approaches him from behind with a uniform speed of 90 km/hr. When the car is at a distance of 24 m from him, the magnitude of the acceleration of the image of the side view mirror is \( a \). The value of \( 100a \) is _____________ m/s\(^2\).

