
\(Mg' = Mg \frac{R^2}{(R+h)^2}\)
\(Mg' = Mg \frac{R^2}{(R+2R)^2} = \frac{Mg}{9}\)
\(Mg' = Mg \frac{R^2}{(R+\frac{3}{2}R)^2} = \frac{Mg}{25}\)
\(Mg \left( \frac{4}{25} - \frac{1}{9} \right) = 49 \, \text{N}\)
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.