Work done (W) = $\vec{F} \times \vec{x} = (-2\hat{i} + 3\hat{j}) \times (3\hat{i}) = -6 \text{ J}$.
Work-energy theorem: W = ΔKE = KEf - KEi = -6 J = KEf - 10 J KEf = 4 J
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : The potential (V) at any axial point, at 2 m distance(r) from the centre of the dipole of dipole moment vector
\(\vec{P}\) of magnitude, 4 × 10-6 C m, is ± 9 × 103 V.
(Take \(\frac{1}{4\pi\epsilon_0}=9\times10^9\) SI units)
Reason R : \(V=±\frac{2P}{4\pi \epsilon_0r^2}\), where r is the distance of any axial point, situated at 2 m from the centre of the dipole.
In the light of the above statements, choose the correct answer from the options given below :
The output (Y) of the given logic gate is similar to the output of an/a :