1. Initial Potential Energy: Initial potential energy (PE) = mgh, where m is the mass, g is acceleration due to gravity, and h is the initial height (10 m).
2. Kinetic Energy Just Before Impact: By conservation of energy, the potential energy is converted to kinetic energy (KE) just before the object strikes the ground: KE = mgh.
3. Kinetic Energy After Impact: The object loses 50% of its KE after striking the ground, so the remaining KE is 0.5(mgh).
4. Rebound Height: The remaining KE is converted back to potential energy as the object rebounds. Let h’ be the rebound height. 0.5(mgh) = mgh’ h’ = 0.5h = 0.5(10 m) = 5 m
5. Conclusion: The rebound height is 5 m.
List I | List II | ||
A | Down’s syndrome | I | 11th chormosome |
B | α-Thalassemia | II | ‘X’ chromosome |
C | β-Thalassemia | III | 21st chromosome |
D | Klinefelter’s syndrome | IV | 16th chromosome |
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :