Step 1: Use SHM velocity equation.
\[ v = \omega \sqrt{a^2 - x^2} \] At \(x_1 = 2\, \text{cm}, v_1 = 4\, \text{cm/s}\); At \(x_2 = 6\, \text{cm}, v_2 = 2\, \text{cm/s}\).
Step 2: Take ratio.
\[ \frac{v_1^2}{v_2^2} = \frac{a^2 - x_1^2}{a^2 - x_2^2} \Rightarrow \frac{16}{4} = \frac{a^2 - 4}{a^2 - 36} \] \[ 4(a^2 - 36) = a^2 - 4 \Rightarrow 3a^2 = 140 \Rightarrow a = \sqrt{\frac{140}{3}}\, \text{cm} \]
Step 3: Find \(\omega\).
\[ v_1 = \omega \sqrt{a^2 - x_1^2} \Rightarrow 4 = \omega \sqrt{\frac{140}{3} - 4} \Rightarrow \omega = \sqrt{\frac{3}{8}}\, \text{rad/s} \]
Step 4: Conclusion.
Hence, \(a = \sqrt{\dfrac{140}{3}}\, \text{cm}\) and \(\omega = \sqrt{\dfrac{3}{8}}\, \text{rad/s}\).
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ µF.

