For the first part (saturated mixture at 0.3 MPa):
Dryness fraction:
\[
x_1 = 0.7
\]
Specific volume of mixture:
\[
v_1 = v_f + x_1(v_g - v_f)
\]
At 0.3 MPa:
\[
v_f = 0.001073~\text{m}^3/\text{kg}, \quad v_g = 0.60582~\text{m}^3/\text{kg}
\]
\[
v_1 = 0.001073 + 0.7(0.60582 - 0.001073) = 0.001073 + 0.7(0.604747) = 0.001073 + 0.423323 = 0.424396~\text{m}^3/\text{kg}
\]
For the second part (saturated liquid at 0.6 MPa):
At 0.6 MPa:
\[
v_f = 0.001101~\text{m}^3/\text{kg}, \quad v_g = 0.31560~\text{m}^3/\text{kg}
\]
Since it's saturated liquid:
\[
v_2 = v_f = 0.001101~\text{m}^3/\text{kg}
\]
Now, total volume:
\[
V = 6 \times v_1 + 12 \times v_2
\]
\[
V = 6 \times 0.424396 + 12 \times 0.001101 = 2.546376 + 0.013212 = 2.559588~\text{m}^3
\]
Total mass:
\[
m = 6 + 12 = 18~\text{kg}
\]
Final specific volume:
\[
v_f = \frac{V}{m} = \frac{2.559588}{18} = 0.1422~\text{m}^3/\text{kg}
\]
\[
\boxed{0.14~\text{m}^3/\text{kg}}
\]