Comprehension

An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at \( O(0,0,0) \) and the three stars have their locations at points \( D, A, \) and \( V \), having position vectors: \[ 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad 7\hat{i} + 5\hat{j} + 8\hat{k}, \quad -3\hat{i} + 7\hat{j} + 11\hat{k} \] respectively. Based on the above information, answer the following questions:

Question: 1

How far is the star \( V \) from star \( A \)? 
 

Show Hint

To find the distance between two points, use the magnitude of the difference of their position vectors.

Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Compute the position vector of \( \overrightarrow{AV} \)
\[ \overrightarrow{AV} = {Position vector of } V - {Position vector of } A \] \[ \overrightarrow{AV} = (-3\hat{i} + 7\hat{j} + 11\hat{k}) - (7\hat{i} + 5\hat{j} + 8\hat{k}) = -10\hat{i} + 2\hat{j} + 3\hat{k}. \] 
Step 2: Compute the magnitude of \( \overrightarrow{AV} \)
\[ |\overrightarrow{AV}| = \sqrt{(-10)^2 + 2^2 + 3^2} = \sqrt{100 + 4 + 9} = \sqrt{113}. \] 
Step 3: Final result
The distance between star \( V \) and star \( A \) is \( \sqrt{113} \) units.

Was this answer helpful?
0
0
Question: 2

Find a unit vector in the direction of \( \overrightarrow{DA} \). 
 

Show Hint

To find a unit vector, divide the vector by its magnitude.

Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Compute \( \overrightarrow{DA} \)
\[ \overrightarrow{DA} = {Position vector of } A - {Position vector of } D \] \[ \overrightarrow{DA} = (7\hat{i} + 5\hat{j} + 8\hat{k}) - (2\hat{i} + 3\hat{j} + 4\hat{k}) = 5\hat{i} + 2\hat{j} + 4\hat{k}. \] Step 2: Find the magnitude of \( \overrightarrow{DA} \)
\[ |\overrightarrow{DA}| = \sqrt{(5)^2 + (2)^2 + (4)^2} = \sqrt{25 + 4 + 16} = \sqrt{45} = 3\sqrt{5}. \] Step 3: Compute the unit vector
The unit vector is: \[ \hat{u} = \frac{\overrightarrow{DA}}{|\overrightarrow{DA}|} = \frac{5\hat{i} + 2\hat{j} + 4\hat{k}}{3\sqrt{5}} = \frac{5}{3\sqrt{5}}\hat{i} + \frac{2}{3\sqrt{5}}\hat{j} + \frac{4}{3\sqrt{5}}\hat{k}. \] Step 4: Final result
The unit vector in the direction of \( \overrightarrow{DA} \) is: \[ \frac{5}{3\sqrt{5}}\hat{i} + \frac{2}{3\sqrt{5}}\hat{j} + \frac{4}{3\sqrt{5}}\hat{k}. \]

Was this answer helpful?
0
0
Question: 3

Find the measure of \( \angle VDA \). 
 

Show Hint

For angles between vectors, always use the dot product formula and ensure the magnitude is correctly computed.

Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Recall the formula for the angle between vectors
The angle \( \theta \) between two vectors \( \overrightarrow{VD} \) and \( \overrightarrow{DA} \) is given by: \[ \cos \theta = \frac{\overrightarrow{VD} \cdot \overrightarrow{DA}}{|\overrightarrow{VD}| \cdot |\overrightarrow{DA}|}. \] Step 2: Compute \( \overrightarrow{VD} \) and \( \overrightarrow{DA} \)
From previous calculations: \[ \overrightarrow{VD} = \overrightarrow{V} - \overrightarrow{D} = (-3\hat{i} + 7\hat{j} + 11\hat{k}) - (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5\hat{i} + 4\hat{j} + 7\hat{k}. \] \[ \overrightarrow{DA} = 5\hat{i} + 2\hat{j} + 4\hat{k}. \] Step 3: Compute \( \overrightarrow{VD} \cdot \overrightarrow{DA} \)
\[ \overrightarrow{VD} \cdot \overrightarrow{DA} = (-5)(5) + (4)(2) + (7)(4) = -25 + 8 + 28 = 11. \] Step 4: Compute magnitudes of \( \overrightarrow{VD} \) and \( \overrightarrow{DA} \)
\[ |\overrightarrow{VD}| = \sqrt{(-5)^2 + 4^2 + 7^2} = \sqrt{25 + 16 + 49} = \sqrt{90}. \] \[ |\overrightarrow{DA}| = \sqrt{(5)^2 + (2)^2 + (4)^2} = \sqrt{25 + 4 + 16} = \sqrt{45}. \] Step 5: Compute \( \cos \theta \)
\[ \cos \theta = \frac{11\sqrt{2}}{\sqrt{90} \cdot \sqrt{45}} = \frac{11\sqrt{2}}{\sqrt{4050}} = \frac{11\sqrt{2}}{90}. \] Step 6: Final result
The measure of \( \angle VDA \) is: \[ \theta = \cos^{-1} \left( \frac{11\sqrt{2}}{90} \right). \]

Was this answer helpful?
0
0
Question: 4

What is the projection of vector \( \overrightarrow{DV} \) on vector \( \overrightarrow{DA} \)? 
 

Show Hint

The projection of one vector onto another gives the component of the first vector along the direction of the second.

Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Recall the formula for projection
The projection of \( \overrightarrow{DV} \) on \( \overrightarrow{DA} \) is given by: \[ {Projection} = \frac{\overrightarrow{DV} \cdot \overrightarrow{DA}}{|\overrightarrow{DA}|}. \] 
Step 2: Compute \( \overrightarrow{DV} \)
\[ \overrightarrow{DV} = \overrightarrow{V} - \overrightarrow{D} = (-5\hat{i} + 4\hat{j} + 7\hat{k}). \] 
Step 3: Compute \( \overrightarrow{DV} \cdot \overrightarrow{DA} \)
From the previous calculations: \[ \overrightarrow{DV} \cdot \overrightarrow{DA} = (-5)(5) + (4)(2) + (7)(4) = -25 + 8 + 28 = 11. \] 
Step 4: Compute \( |\overrightarrow{DA}| \)
\[ |\overrightarrow{DA}| = \sqrt{(5)^2 + (2)^2 + (4)^2} = \sqrt{45} = 3\sqrt{5}. \] 
Step 5: Compute the projection
\[ {Projection} = \frac{\overrightarrow{DV} \cdot \overrightarrow{DA}}{|\overrightarrow{DA}|} = \frac{11}{3\sqrt{5}}. \] 
Step 6: Final result
The projection of \( \overrightarrow{DV} \) on \( \overrightarrow{DA} \) is: \[ \frac{11\sqrt{5}}{15}. \]

Was this answer helpful?
0
0