In a series R-L circuit, the impedance \(Z\) is given by:
\[
Z = \sqrt{R^2 + X_L^2}
\]
Given:
- \(R = 60 \, \Omega\)
- \(X_L = 80 \, \Omega\)
Substitute the values:
\[
Z = \sqrt{(60)^2 + (80)^2} = \sqrt{3600 + 6400} = \sqrt{10000} = 100 \, \Omega
\]
The power factor is:
\[
\tan(\theta) = \frac{X_L}{R} = \frac{80}{60} = \frac{4}{3}
\]
Thus:
\[
\theta = \tan^{-1}\left(\frac{4}{3}\right) \approx 53.13^\circ
\]
The power factor is:
\[
{pf} = \cos(53.13^\circ) \approx 0.6
\]
Thus, the impedance is \(100 \, \Omega\) and the power factor is \(0.6\).