Step 1: Mean time between collisions $\tau$ is inversely proportional to number density and average speed:
\[
\tau \propto \frac{1}{n\bar{v}}
\]
Step 2: For an ideal gas,
\[
n \propto \frac{P}{T}, \qquad \bar{v} \propto \sqrt{T}
\]
Step 3: Hence,
\[
\tau \propto \frac{1}{\left(\frac{P}{T}\right)\sqrt{T}}
= \frac{\sqrt{T}}{P}
\]
Step 4: Therefore,
\[
\frac{\tau_2}{\tau_1}
= \frac{\sqrt{T_2}/P_2}{\sqrt{T_1}/P_1}
\]
Given:
\[
T_1=300\,\text{K}, \quad P_1=2\,\text{atm}
\]
\[
T_2=500\,\text{K}, \quad P_2=4\,\text{atm}
\]
Step 5: Substitute:
\[
\frac{\tau_2}{\tau_1}
= \frac{\sqrt{500}/4}{\sqrt{300}/2}
= \frac{2\sqrt{500}}{4\sqrt{300}}
= \frac{\sqrt{5}}{2\sqrt{3}}
= \sqrt{\frac{5}{12}}
\approx 0.645
\]
Step 6: Hence,
\[
\tau_2 \approx 0.645 \times 6\times10^{-8}
\approx 3.9\times10^{-8}\,\text{s}
\approx 4\times10^{-8}\,\text{s}
\]