Step 1: Volume of unit cell.
\[
a = 0.362 \, \text{nm} = 0.362 \times 10^{-9} \, \text{m}
\]
\[
V_{cell} = a^3 = (0.362 \times 10^{-9})^3 \approx 4.75 \times 10^{-29} \, \text{m}^3
\]
Step 2: Number of atoms per FCC cell.
FCC has 4 atoms per unit cell.
Each atom contributes \(Z = 29\) electrons.
\[
N_e = 4 \times 29 = 116 \, \text{electrons per unit cell}
\]
Step 3: Dipole moment per cell.
Displacement of electrons: \(\delta = 1.1 \times 10^{-18}\, \text{m}\).
\[
p_{cell} = N_e \, e \, \delta = 116 \times (1.6 \times 10^{-19})(1.1 \times 10^{-18})
\]
\[
p_{cell} = 2.04 \times 10^{-35} \, \text{C·m}
\]
Step 4: Polarization.
\[
P = \frac{p_{cell}}{V_{cell}} = \frac{2.04 \times 10^{-35}}{4.75 \times 10^{-29}} \approx 4.29 \times 10^{-7} \, \text{C/m}^2
\]
Convert to \(\mu C/m^2\):
\[
P = 0.429 \, \mu C/m^2
\]
Recheck with rounding: actual result ~ \(\boxed{0.43 \, \mu C/m^2}\).