Step 1: Write the successive-discount equation.
Let the second discount be $x\%$. Then \[ \text{Net Price}=\underbrace{₹ 65}_{\text{List}}\times(1-0.10)\times(1-x)=₹ 56.16. \]
Step 2: Solve for $x$.
$65\times 0.9=58.5$ $\Rightarrow$ $58.5(1-x)=56.16$
$\Rightarrow\ 1-x=\dfrac{56.16}{58.5}=0.96$ (since $58.5\times 0.96=56.16$)
$\Rightarrow\ x=1-0.96=0.04=4\%$.
\[ \boxed{4\%} \]