Standard error (SE) of the mean: If each observation has standard deviation $\sigma$, then for $n$ i.i.d.\ observations, the SE of the sample mean is $\sigma_{\bar{x}}=\dfrac{\sigma}{\sqrt{n}}$.
Here the single‐observation standard error is $5''$ (acts as $\sigma$). We require $\sigma_{\bar{x}}=1''$. Hence
\[
\frac{5''}{\sqrt{n}}=1'' \;⇒\; \sqrt{n}=5 \;⇒\; n=25.
\]
Therefore, the surveyor must take 25 observations.
\[
\boxed{25}
\]