Question:

An aircraft is flying at an altitude of 4500 m above sea level, where the ambient pressure, temperature, and density are 57 kPa, 259 K, and 0.777 kg/m\(^3\), respectively. The speed of the aircraft \( V \) is 230 m/s. Gas constant \( R = 287 \, {J/kg/K} \), and specific heat ratio \( \gamma = 1.4 \). If the stagnation pressure is \( p_0 \), and static pressure is \( p \), the value of \[ \frac{p_0 - p}{\frac{1}{2} \rho V^2} \] is \_\_\_\_\_\_\_\_ (rounded off to two decimal places).

Show Hint

For calculating the stagnation pressure and the related quantities in compressible flow, remember to apply the Bernoulli equation in the form \( \frac{p_0}{p} = \left( 1 + \frac{\gamma - 1}{2} \cdot \frac{V^2}{R T} \right)^{\frac{\gamma}{\gamma - 1}} \).
Updated On: Apr 10, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Calculate the Mach Number
First, compute the speed of sound (\(a\)): \[ a = \sqrt{\gamma R T} = \sqrt{1.4 \times 287 \times 259} \approx 322.5 \, {m/s} \] Next, the Mach number (\(M\)): \[ M = \frac{V}{a} = \frac{230}{322.5} \approx 0.713 \] Step 2: Compute Stagnation Pressure (\(p_0\))
Using the isentropic relation: \[ \frac{p_0}{p} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{\gamma}{\gamma - 1}} \] Substitute \(\gamma = 1.4\) and \(M = 0.713\): \[ \frac{p_0}{p} = \left(1 + \frac{0.4}{2} \times 0.713^2\right)^{3.5} = \left(1 + 0.2 \times 0.508\right)^{3.5} \approx 1.396 \] Thus: \[ p_0 = 1.396 \times p = 1.396 \times 57 \, {kPa} \approx 79.57 \, {kPa} \] Step 3: Compute \(p_0 - p\)
\[ p_0 - p = 79.57 - 57 = 22.57 \, {kPa} = 22570 \, {Pa} \] Step 4: Dynamic Pressure Term
\[ \frac{1}{2} p V^2 = \frac{1}{2} \times 0.777 \times (230)^2 \approx 20550 \, {Pa} \] Step 5: Evaluate the Expression
\[ \frac{p_0 - p}{\frac{1}{2} p V^2} = \frac{22570}{20550} \approx 1.098 \approx \boxed{1.10} \]
Was this answer helpful?
0
0

Top Questions on Isentropic Flow

Questions Asked in GATE AE exam

View More Questions