Since the mixing chamber is insulated and rigid, the steady-flow energy equation reduces to enthalpy balance:
\[
\dot{m}_c c_p T_c + \dot{m}_a c_p T_a = (\dot{m}_c + \dot{m}_a)c_p T_{\text{mix}}
\]
Cancel $c_p$ throughout:
\[
\dot{m}_c T_c + \dot{m}_a T_a = (\dot{m}_c + \dot{m}_a)T_{\text{mix}}
\]
Substitute the given temperatures:
\[
T_c = 10^\circ\text{C}, \quad T_a = 30^\circ\text{C}, \quad T_{\text{mix}} = 24^\circ\text{C}
\]
Insert values:
\[
10\dot{m}_c + 30\dot{m}_a = 24(\dot{m}_c + \dot{m}_a)
\]
Expand the right-hand side:
\[
10\dot{m}_c + 30\dot{m}_a = 24\dot{m}_c + 24\dot{m}_a
\]
Rearrange:
\[
30\dot{m}_a - 24\dot{m}_a = 24\dot{m}_c - 10\dot{m}_c
\]
\[
6\dot{m}_a = 14\dot{m}_c
\]
Thus, the required ratio is:
\[
\frac{\dot{m}_c}{\dot{m}_a} = \frac{6}{14} = \frac{3}{7}
\]