Step 1: Understand the concept of quantization of charge.
Charge on any object must be an integral multiple of elementary charge:
\[
q = n \cdot e, \quad \text{where } e = 1.6 \times 10^{-19} \, \text{C},\quad n \in \mathbb{Z}
\]
Step 2: Check divisibility of each given charge by \( e \).
\begin{itemize}
\item Option (1): \( 3.2 \times 10^{-19} = 2 \cdot e \) → valid.
\item Option (2): \( 6.4 \times 10^{-19} = 4 \cdot e \) → valid.
\item Option (3): \( 9.6 \times 10^{-20} \div 1.6 \times 10^{-19} = 0.6 \) → not an integer → not valid.
\item Option (4): \( 9.6 \times 10^{-18} \div 1.6 \times 10^{-19} = 60 \) → valid.
\end{itemize}
So, the charge in option (3) is not a multiple of the elementary charge and hence cannot exist on any charged body.