Step 1: Model one round.
If Amitabh receives y, he outputs 2y. Then Sashi outputs 2y+50.
Amitabh wins iff Sashi is the first to exceed 1000.
Step 2: Characterize the “losing for Sashi” window.
On Sashi’s turn we need
2y ≤ 1000 and 2y+50 > 1000 ⇒ y ∈ (475, 500].
Call the value before Sashi’s losing move yn.
Step 3: Work backwards to find the smallest initial x.
The value passed back to Amitabh each time satisfies
yk+1 = 2yk + 50 ⟺ yk = (yk+1 − 50)/2.
To minimize the initial x = y1, take the smallest yn ∈ {476,…,500} that allows repeated back-steps to stay integer and positive.
Try yn = 478:
yn−1 = (478 − 50)/2 = 214,
yn−2 = (214 − 50)/2 = 82,
yn−3 = (82 − 50)/2 = 16.
Thus an initial x = 16 produces the sequence
16 → 32 → 82 → 164 → 214 → 428 → 478 → 956 → 1006,
so Sashi exceeds 1000 first and loses.
Checking smaller options from yn ∈ [476, 500] shows no back-stepped integer gives x < 16 and x ≥ 1. Hence the smallest winning start is
x = 16 ⇒ sum of digits = 1 + 6 = 7.
Final Answer: 7