Step 1: Let the number of pages Albela, Bob and Chulbul read be \(x,\;y,\;z\) respectively. Then
\[
x+y+z=78.
\]
Step 2: Their reading times (in minutes) are \(2x,\;3y,\;4z\). These are equal, so set
\[
2x=3y=4z=T\text{(common time)}.
\]
Thus \(x=\dfrac{T}{2},\;y=\dfrac{T}{3},\;z=\dfrac{T}{4}.\)
Step 3: Sum the pages:
\[
\frac{T}{2}+\frac{T}{3}+\frac{T}{4}=78
⇒ T\Big(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\Big)=78.
\]
Compute the bracket: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{6+4+3}{12}=\dfrac{13}{12}.\)
Step 4: Solve for \(T\):
\[
T\cdot\frac{13}{12}=78⇒ T=78\cdot\frac{12}{13}=6\cdot12=72.
\]
Hence Bob's pages \(y=\dfrac{T}{3}=\dfrac{72}{3}=24.\)