Air at a pressure of 1 MPa and 300 K is flowing in a pipe. An insulated evacuated rigid tank is connected to this pipe through an insulated valve. The volume of the tank is 1 m3. The valve is opened and the tank is filled with air until the pressure in the tank is 1 MPa. Subsequently, the valve is closed. Consider air to be an ideal gas and neglect bulk kinetic and potential energy. The final temperature of air in the tank is \(\underline{\hspace{2cm}}\) K (1 decimal place).
Air having a mass flow rate of 2 kg/s enters a diffuser at 100 kPa and 30°C, with a velocity of 200 m/s. Exit area of the diffuser is 400 cm2 while the exit temperature of the air is 45°C. The rate of heat loss from the diffuser to the surrounding is 8 kJ/s. The pressure at the diffuser exit is \(\underline{\hspace{2cm}}\) kPa (2 decimal places).
An electricity utility company charges ₹7 per kWh. If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?
