Addition of HBr to propene is an example of an electrophilic substitution reaction.
Hydrogen bromide provides an electrophile, H+ .This electrophile attacks the double bond to form 1° and 2° carbocations as shown:
Secondary carbocations are more stable than primary carbocations. Hence, the former predominates since it will form at a faster rate. Thus, in the next step, Br- attacks the carbocation to form 2 - bromopropane as the major product.
This reaction follows Markovnikov's rule where the negative part of the addendum is attached to the carbon atom having a lesser number of hydrogen atoms.
In the presence of benzoyl peroxide, an addition reaction takes place anti to Markovnikov's rule. The reaction follows a free radical chain mechanism as:
Secondary free radicals are more stable than primary radicals. Hence, the former predominates since it forms at a faster rate. Thus, 1 - bromopropane is obtained as the major product.
In the presence of peroxide, Br free radical acts as an electrophile. Hence, two different products are obtained on addition of HBr to propene in the absence and presence of peroxide.
List I (Reagents Used) | List II (Compound with Functional group detected) | ||
A | Alkaline solution of copper sulphate and sodium citrate | I | |
B | Neutral FeCl3 solution | II | |
C | Alkaline chloroform solution | III | |
D | Potassium iodide and sodium hypochlorite | IV |
Choose the correct answer from the options given below :
The alkali metal with the lowest E M- M+ (V) is X and the alkali metal with highest E M- M+ is Y. Then X and Y are respectively:
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon-carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane (CH4), where n = 1 (sometimes called the parent molecule), to arbitrarily large and complex molecules, like pentacontane (C50H102) or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane (C14H30).
Due to very little difference of electronegativity between carbon and hydrogen and covalent nature of C-C bond or C-H bond, alkanes are generally non-polar molecules.As we generally observe, polar molecules are soluble in polar solvents whereas non-polar molecules are soluble in non-polar solvents. Hence, alkanes are hydrophobic in nature that is, alkanes are insoluble in water.
As the intermolecular Van Der Waals forces increase with the increase of the molecular size or the surface area of the molecule we observe:The straight-chain alkanes are observed to have a higher boiling point in comparison to their structural isomers.
The melting point of alkanes follow the same trend as their boiling point that is, it increases with increase in molecular weight.