Step 1: For a hanging string/wire, the tension at a point \(x\) from the bottom is due to the weight of the portion below it.
Mass below point \(x\):
\[
m(x)=\int_x^{l_0}\mu_0 s\,ds=\frac{\mu_0}{2}(l_0^2-x^2).
\]
Step 2: Tension at that point:
\[
T(x)=m(x)g=\frac{\mu_0 g}{2}(l_0^2-x^2).
\]
Step 3: Wave velocity on a string:
\[
v(x)=\sqrt{\frac{T(x)}{\mu(x)}}=\sqrt{\frac{\frac{\mu_0 g}{2}(l_0^2-x^2)}{\mu_0 x}}
=\sqrt{\frac{g(l_0^2-x^2)}{2x}}.
\]
Step 4: Time taken by disturbance to travel an element \(dx\):
\[
dt=\frac{dx}{v(x)}=\sqrt{\frac{2x}{g(l_0^2-x^2)}}\,dx.
\]
Step 5: Total time:
\[
t=\int_0^{l_0}\sqrt{\frac{2x}{g(l_0^2-x^2)}}\,dx
=\pi\sqrt{\frac{l_0}{2g}}.
\]
Step 6: Compare with options expressed as \( \sqrt{\frac{n l_0}{g}} \).
True coefficient \( \frac{\pi}{\sqrt2}\approx2.22 \).
Option (A) gives \( \sqrt6\approx2.45 \) which is closest.
Hence → (A).