Step 1: Use the magnetic force on a current-carrying wire.
The force on an element \(d\vec{l}\) is:
\[
d\vec{F} = I \, (d\vec{l} \times \vec{B})
\]
Step 2: Write the differential length vector of the wire.
The wire lies in the \(xy\)-plane with:
\[
y = x^2 \Rightarrow \frac{dy}{dx} = 2x
\]
So,
\[
d\vec{l} = dx\,\hat{i} + dy\,\hat{j}
= ( \hat{i} + 2x\,\hat{j} )\,dx
\]
Step 3: Evaluate the cross product \(d\vec{l} \times \vec{B}\).
Given:
\[
\vec{B} = -0.02\,\hat{k}
\]
\[
d\vec{l} \times \vec{B}
= (\hat{i} + 2x\,\hat{j}) \times (-0.02\,\hat{k})\,dx
\]
Using vector products:
\[
\hat{i} \times \hat{k} = -\hat{j}, \quad
\hat{j} \times \hat{k} = \hat{i}
\]
\[
d\vec{l} \times \vec{B}
= -0.02(-\hat{j} + 2x\,\hat{i})\,dx
\]
\[
= (0.02\,\hat{j} - 0.04x\,\hat{i})\,dx
\]
Step 4: Integrate over the length of the wire.
\[
\vec{F} = I \int_{-2}^{2} (0.02\,\hat{j} - 0.04x\,\hat{i})\,dx
\]
\[
\int_{-2}^{2} x\,dx = 0
\]
\[
\vec{F} = I \left[ 0.02 \int_{-2}^{2} dx \right] \hat{j}
\]
\[
= I \,(0.02 \times 4)\,\hat{j}
= 0.08 I\,\hat{j}
\]
With \(I = 2\,\text{A}\):
\[
\vec{F} = 0.16\,\hat{j}\,\text{N}
\]
Step 5: Find the acceleration of the wire.
Mass:
\[
m = 100\,\text{g} = 0.1\,\text{kg}
\]
\[
\vec{a} = \frac{\vec{F}}{m}
= \frac{0.16}{0.1}\,\hat{j}
= 1.6\,\hat{j}\,\text{m s}^{-2}
\]
Hence, the acceleration of the wire is \(\boxed{1.6\,\hat{j}\,\text{m s}^{-2}}\).