Step 1: Understanding Young’s modulus formula
Young’s modulus \( Y \) is given by:
\[
Y = \frac{F L}{A \Delta L}
\]
where:
- \( F = 440 \text{ N} \) (applied force),
- \( L = 100 \text{ cm} = 1 \text{ m} \) (original length),
- \( A = 2 \text{ mm}^2 = 2 \times 10^{-6} \text{ m}^2 \) (cross-sectional area),
- \( \Delta L = 2 \text{ mm} = 2 \times 10^{-3} \text{ m} \) (elongation).
Step 2: Substituting the values
\[
Y = \frac{440 \times 1}{(2 \times 10^{-6}) \times (2 \times 10^{-3})}
\]
Step 3: Simplifying the expression
\[
Y = \frac{440}{4 \times 10^{-9}}
\]
\[
Y = 1.1 \times 10^{11} \text{ Nm}^{-2}
\]
Thus, the correct answer is option (B) \(1.1 \times 10^{11} \text{ Nm}^{-2}\).