To find the fundamental frequency of a vibrating wire, we use the formula for the fundamental frequency of a string fixed at both ends:
f = \(\frac{1}{2L}\) \(\sqrt{\frac{T}{\mu}}\)
Where:
Substitute these values into the formula:
f = \(\frac{1}{2 \times 0.5}\) \(\sqrt{\frac{4}{0.0001}}\)
f = \(\frac{1}{1}\) \(\sqrt{40000}\)
The square root of 40000 is 200, so:
f = 200 Hz
Hence, the fundamental frequency of the wire is 200 Hz.
The fundamental frequency \( f_1 \) of a vibrating string is given by: \[ f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \] where:
- \( L = 0.5 \, \text{m} \),
- \( T = 4 \, \text{N} \),
- \( \mu = 0.0001 \, \text{kg/m} \). Substitute the values into the equation: \[ f_1 = \frac{1}{2 \times 0.5} \sqrt{\frac{4}{0.0001}} = \frac{1}{1} \times \sqrt{40000} = 200 \, \text{Hz} \] Thus, the fundamental frequency is 200 Hz.