Using the kinematic equation for rotational motion:
\[
\omega^2 = \omega_0^2 + 2 \alpha \theta
\]
Given:
Initial angular speed, \( \omega_0 = 600 \) rev/min \( = 600 \times \frac{2\pi}{60} = 20\pi \) rad/s
Final angular speed, \( \omega = 0 \) rad/s
Angular acceleration, \( \alpha = -2 \) rad/s\(^2\)
Solving for \( \theta \):
\[
0 = (20\pi)^2 + 2(-2) \theta
\]
\[
400\pi^2 = 4\theta
\]
\[
\theta = \frac{400\pi^2}{4} = 100\pi^2
\]
Since 1 revolution corresponds to \( 2\pi \) radians,
\[
\text{Revolutions} = \frac{100\pi^2}{2\pi} = 157
\]
Thus, the total number of revolutions is 157.