Step 1: Load by material yielding (Tresca criterion).
Axial stress = \(\sigma = \dfrac{P}{A}\).
For yielding:
\[
P_y = \sigma_y \cdot A = 145 \times 10^6 \times 7.85 \times 10^{-3}
\]
\[
P_y = 1.137 \times 10^6 \, N = 1137.0 \, kN
\]
Step 2: Load by Euler buckling.
Euler’s critical load:
\[
P_{cr} = \frac{\pi^2 EI}{(K L)^2}
\]
For fixed-free column: \(K = 2\), so effective length = \(L_{eff} = 2L = 4 \, m\).
\[
P_{cr} = \frac{\pi^2 (9.82 \times 10^5)}{(4)^2}
\]
\[
P_{cr} = \frac{9.87 \times 9.82 \times 10^5}{16}
\]
\[
P_{cr} \approx 6.07 \times 10^5 \, N = 607.0 \, kN
\]
Step 3: Governing failure load.
The actual maximum safe load is the lower of the two:
\[
P_{safe} = \min(P_y, P_{cr}) = \min(1137, 607) = 607 \, kN
\]
Final Answer:
\[
\boxed{607.0 \, kN}
\]