Step 1: Angular momentum conservation at the instant of collision.
Take moments about the hinge (no external impulsive torque about hinge).
Initial angular momentum due to particle:
\[
L_i = m v \cdot L
\]
Moment of inertia about the hinge after collision:
\[
I = I_{\text{rod}} + I_{\text{particle}}
\]
For the rod:
\[
I_{\text{rod}} = \frac{1}{3}(3m)L^2 = mL^2
\]
For the particle stuck at the top:
\[
I_{\text{particle}} = mL^2
\]
\[
\Rightarrow I = 2mL^2
\]
Applying angular momentum conservation:
\[
m v L = (2mL^2)\omega_0
\]
\[
\Rightarrow \omega_0 = \frac{v}{2L}
\]
Step 2: Use energy conservation after collision.
After collision, the system rotates and falls until it hits the ground.
Initial rotational kinetic energy:
\[
K = \frac{1}{2}I\omega_0^2
= \frac{1}{2}(2mL^2)\left(\frac{v}{2L}\right)^2
= \frac{mv^2}{4}
\]
Loss of gravitational potential energy:
Rod (mass \(3m\)), centre at \(L/2\):
\[
\Delta U_{\text{rod}} = 3m g \cdot \frac{L}{2} = \frac{3}{2}mgL
\]
Particle (mass \(m\)) at height \(L\):
\[
\Delta U_{\text{particle}} = mgL
\]
Total loss:
\[
\Delta U = \frac{3}{2}mgL + mgL = \frac{5}{2}mgL
\]
Step 3: Final angular speed when rod hits the ground.
Let final angular speed be \(\omega\).
Total energy just before hitting ground:
\[
\frac{1}{2}I\omega^2
= \frac{mv^2}{4} + \frac{5}{2}mgL
\]
Substitute \(I = 2mL^2\):
\[
\frac{1}{2}(2mL^2)\omega^2
= \frac{mv^2}{4} + \frac{5}{2}mgL
\]
\[
mL^2\omega^2
= \frac{mv^2}{4} + \frac{5}{2}mgL
\]
Divide by \(mL^2\):
\[
\omega^2 = \frac{v^2}{4L^2} + \frac{5g}{2L}
\]
\[
\omega = \sqrt{\frac{5g}{L} + \frac{v^2}{L^2}}
\]
Final Answer:
\[
\boxed{\omega = \sqrt{\dfrac{5g}{L} + \dfrac{v^2}{L^2}}}
\]