For a linear velocity profile in a boundary layer, the velocity varies as:
\[
u(y) = U_{\infty} \left( \frac{y}{\delta} \right)
\]
where \( \delta \) is the boundary layer thickness.
The momentum thickness is defined as:
\[
\theta = \int_0^{\delta} \frac{u}{U_\infty} \left(1 - \frac{u}{U_\infty}\right) dy
\]
Substitute the linear profile \( \frac{u}{U_\infty} = \frac{y}{\delta} \):
\[
\theta = \int_0^{\delta} \left(\frac{y}{\delta}\right)\left(1 - \frac{y}{\delta}\right) dy
\]
Expand the integrand:
\[
\theta = \int_0^{\delta} \left(\frac{y}{\delta} - \frac{y^2}{\delta^2}\right) dy
\]
Compute the integrals:
\[
\int_0^{\delta} \frac{y}{\delta}\, dy = \frac{1}{\delta}\left[\frac{y^2}{2}\right]_0^\delta = \frac{\delta}{2}
\]
\[
\int_0^{\delta} \frac{y^2}{\delta^2}\, dy = \frac{1}{\delta^2}\left[\frac{y^3}{3}\right]_0^\delta = \frac{\delta}{3}
\]
So,
\[
\theta = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}
\]
Thus the ratio of momentum thickness to boundary layer thickness is:
\[
\frac{\theta}{\delta} = \frac{1}{6}
\]
Hence, the correct answer is (C).