Question:

A typical boundary layer over a flat plate has a linear velocity profile with zero velocity at the wall and freestream velocity \(U_{\infty}\) at the outer edge of the boundary layer. What is the ratio of the momentum thickness to the thickness of the boundary layer?

Show Hint

For linear velocity profiles, boundary layer thickness ratios often simplify neatly using basic integrals.
Updated On: Nov 27, 2025
  • ( \frac{1}{2} \)
  • ( \frac{1}{4} \)
  • ( \frac{1}{6} \)
  • ( \frac{1}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

For a linear velocity profile in a boundary layer, the velocity varies as:
\[ u(y) = U_{\infty} \left( \frac{y}{\delta} \right) \] where \( \delta \) is the boundary layer thickness.
The momentum thickness is defined as:
\[ \theta = \int_0^{\delta} \frac{u}{U_\infty} \left(1 - \frac{u}{U_\infty}\right) dy \] Substitute the linear profile \( \frac{u}{U_\infty} = \frac{y}{\delta} \):
\[ \theta = \int_0^{\delta} \left(\frac{y}{\delta}\right)\left(1 - \frac{y}{\delta}\right) dy \] Expand the integrand:
\[ \theta = \int_0^{\delta} \left(\frac{y}{\delta} - \frac{y^2}{\delta^2}\right) dy \] Compute the integrals:
\[ \int_0^{\delta} \frac{y}{\delta}\, dy = \frac{1}{\delta}\left[\frac{y^2}{2}\right]_0^\delta = \frac{\delta}{2} \] \[ \int_0^{\delta} \frac{y^2}{\delta^2}\, dy = \frac{1}{\delta^2}\left[\frac{y^3}{3}\right]_0^\delta = \frac{\delta}{3} \] So,
\[ \theta = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6} \] Thus the ratio of momentum thickness to boundary layer thickness is:
\[ \frac{\theta}{\delta} = \frac{1}{6} \] Hence, the correct answer is (C).
Was this answer helpful?
0
0

Top Questions on Particle kinematics and dynamics

View More Questions

Questions Asked in GATE XE exam

View More Questions