Let the atomic mass of B = 1 unit.
Then the atomic mass of A = 2 units.
Phase $\alpha$: Equal weights of A and B.
Take 1 g of A and 1 g of B.
\[
\text{moles of A} = \frac{1}{2} = 0.5,\qquad
\text{moles of B} = 1
\]
Total moles = 1.5
\[
x_A^\alpha = \frac{0.5}{1.5} = 0.333,\qquad
x_B^\alpha = 0.667
\]
Phase $\beta$: Mole fraction of A is twice that of B.
Let:
\[
x_B^\beta = p,\qquad x_A^\beta = 2p
\]
Since:
\[
2p + p = 1
\]
\[
p = \frac{1}{3}
\]
Thus:
\[
x_A^\beta = \frac{2}{3},\qquad x_B^\beta = \frac{1}{3}
\]
Given: Equal amounts of $\alpha$ and $\beta$
\[
x_A = \frac{x_A^\alpha + x_A^\beta}{2}
\]
\[
x_A = \frac{0.333 + 0.667}{2}
= 0.5
\]
\[
\boxed{0.5}
\]