A transfer function \(H(s)\) becomes zero when its numerator is zero (and denominator is non-zero).
The numerator of \( H(s) = \frac{2(s+2)(s+4)}{(s+3)(s+5)(s+7)} \) is \(N(s) = 2(s+2)(s+4)\).
Set \(N(s) = 0 \Rightarrow 2(s+2)(s+4) = 0\).
This gives \(s+2=0\) or \(s+4=0\).
So, \(s=-2\) or \(s=-4\). These are the zeros of \(H(s)\).
At \(s=-2\), denominator \(= (-2+3)(-2+5)(-2+7) = (1)(3)(5) = 15 \neq 0\).
So \(H(-2) = 0/15 = 0\).
At \(s=-3\) or \(s=-5\), the denominator is zero, so these are poles.
At \(s=0\), \(H(0) = \frac{2(2)(4)}{3 \cdot 5 \cdot 7} = \frac{16}{105} \neq 0\).
Thus, the transfer function becomes zero at \(s=-2\).
\[ \boxed{s=-2} \]