A transfer function \(H(s)\) becomes zero when its numerator is zero (and denominator is non-zero).
The numerator of \( H(s) = \frac{2(s+2)(s+4)}{(s+3)(s+5)(s+7)} \) is \(N(s) = 2(s+2)(s+4)\).
Set \(N(s) = 0 \Rightarrow 2(s+2)(s+4) = 0\).
This gives \(s+2=0\) or \(s+4=0\).
So, \(s=-2\) or \(s=-4\). These are the zeros of \(H(s)\).
At \(s=-2\), denominator \(= (-2+3)(-2+5)(-2+7) = (1)(3)(5) = 15 \neq 0\).
So \(H(-2) = 0/15 = 0\).
At \(s=-3\) or \(s=-5\), the denominator is zero, so these are poles.
At \(s=0\), \(H(0) = \frac{2(2)(4)}{3 \cdot 5 \cdot 7} = \frac{16}{105} \neq 0\).
Thus, the transfer function becomes zero at \(s=-2\).
\[ \boxed{s=-2} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |