Let the present value of money be \(x\)
\(\frac{x\times12}{100}+x=10028\)
\(x=\frac{10028}{1.12}\)
This amount after 3 months
\(\frac{\frac{10028}{1.12}\times12\times3}{12\times100}+\frac{10028}{1.12}\)
\(\frac{10028\times3}{1.12\times100}+\frac{10028}{1.12}\)
\(=\frac{10028\times103}{112}=9222.17\approx Rs9200\)
The correct option is (B)
List-I | List-II |
---|---|
(A) Confidence level | (I) Percentage of all possible samples that can be expected to include the true population parameter |
(B) Significance level | (III) The probability of making a wrong decision when the null hypothesis is true |
(C) Confidence interval | (II) Range that could be expected to contain the population parameter of interest |
(D) Standard error | (IV) The standard deviation of the sampling distribution of a statistic |