Step 1: Understand the motion
For a disc rolling without slipping, total kinetic energy is the sum of translational and rotational kinetic energies.
Step 2: Use the formulas
For a disc of mass \( m \), radius \( R \), and center of mass velocity \( v \):
\[
\text{Translational KE} = \frac{1}{2}mv^2
\]
\[
\text{Rotational KE about CM} = \frac{1}{2}I\omega^2 = \frac{1}{2} \cdot \frac{1}{2}mR^2 \cdot \left(\frac{v}{R}\right)^2 = \frac{1}{4}mv^2
\]
Step 3: Total kinetic energy
\[
\text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{4}mv^2 = \frac{3}{4}mv^2
\]
Step 4: Rotational kinetic energy
\[
\text{Rotational KE} = \frac{1}{4}mv^2
\]
Step 5: Ratio
\[
\text{Total KE} = 3 \times (\text{Rotational KE})
\]