A textile filament records a tensile stress of 0.3 GPa at a tensile strain of 0.04. Assuming Hookean behavior, the tensile modulus (GPa) of the filament, (rounded off to one decimal place), is \(\underline{\hspace{2cm}}\).
Show Hint
For materials that follow Hooke's law, the tensile modulus can be calculated by dividing the tensile stress by the tensile strain.
For Hookean behavior, the tensile modulus \( E \) is given by the formula:
\[
E = \frac{\text{Stress}}{\text{Strain}}.
\]
Substitute the given values:
\[
E = \frac{0.3 \, \text{GPa}}{0.04} = 7.5 \, \text{GPa}.
\]
Thus, the tensile modulus is \( 7.5 \, \text{GPa} \).