Step 1: Write the single-tap rate.
One tap fills the tank in 6 hours \(\Rightarrow\) rate \(=\frac{1}{6}\) tank/hour.
Step 2: Time to fill the first half with one tap.
\[ t_1=\frac{\text{work}}{\text{rate}}=\frac{\frac12}{\frac16}=3\ \text{hours}. \]
Step 3: Fill the remaining half with 4 taps (1 existing + 3 new).
Combined rate \(=4\times\frac{1}{6}=\frac{2}{3}\) tank/hour.
\[ t_2=\frac{\frac12}{\frac{2}{3}}=\frac{1}{2}\times\frac{3}{2}=\frac{3}{4}\ \text{hour}=45\ \text{minutes}. \]
Step 4: Total time.
\[ t_{\text{total}} = t_1+t_2 = 3\ \text{hours}+45\ \text{minutes}=3\ \text{hours }45\ \text{minutes}. \] \[ \boxed{3\ \text{hours }45\ \text{minutes}} \]