For sinusoidal steady state at $\omega=\pi$, the frequency response is
\[
H(j\omega)=\frac{j\omega-\pi}{j\omega+\pi} \Rightarrow
H(j\pi)=\frac{j\pi-\pi}{j\pi+\pi}.
\]
Magnitude: $|H(j\pi)|=\dfrac{\sqrt{\pi^2+\pi^2}}{\sqrt{\pi^2+\pi^2}}=1$ (no gain change).
Phase: $\angle(j\pi-\pi)=135^\circ$, $\angle(j\pi+\pi)=45^\circ$ $\Rightarrow$ $\angle H(j\pi)=90^\circ=\dfrac{\pi}{2}$.
Thus the output lags the input by $-\,\dfrac{\pi}{2}$? (Equivalently, the output phase $=\text{input phase}+\dfrac{\pi}{2}$.) To obtain $y(t)=\sin(\pi t)$ (zero phase), the input must be
\[
x(t)=\sin\!\big(\pi t-\tfrac{\pi}{2}\big)u(t),
\]
which is option \fbox{(C)}.