The decrease in available energy is calculated using the formula:
\( \Delta Q = \dot{Q} \left( 1 - \frac{T_2}{T_1} \right) \)
Where: \( \dot{Q} = 7200 \, \text{kJ/min}, \, T_1 = 1000 \, K, \, \text{and} \, T_2 = 300 \, K \). After plugging in the values:
\( \Delta Q = 7200 \times \left( 1 - \frac{300}{1000} \right) = 7200 \times 0.7 = 5040 \, \text{kJ/min} \)
LIST I | LIST II |
A. Subcooled water | I. 1 bar and 134°C |
B. Superheated steam | II. Dryness fraction = 1 and 100°C |
C. Steam at critical state | III. 20°C and 1.01325 bar |
D. Saturated steam | IV. 374.15°C and 220.8 bar |
Choose the correct answer from the options given below:
LIST I (Component) | LIST II (Equipment used in) |
A. Draft Tube | III. Francis Turbine |
B. Thermostatic Expansion Valve | II. Cold Storage |
C. Feed Water Heater | I. Thermal Power Plant |
D. Automatic Expansion Valve | IV. Central AC Plant |
LIST I (Type of the Matrix) | LIST II (Property) | ||
---|---|---|---|
A. | Symmetric Matrix | I. aij = aji, for values of i and j | |
B. | Hermitian Matrix | II. aij = āji, for values of i and j | |
C. | Skew-Hermitian matrix | III. aij = -āji, for values of i and j | |
D. | Skew-Symmetric matrix | IV. aij = -aji, for values of i and j |