A supersonic stream of an ideal gas at Mach number \( M_1 = 5 \) is turned by a ramp, as shown in the figure. The ramp angle is 20°. The pressure ratio is \( \frac{p_2}{p_1} = 7.125 \) and the specific heat ratio is \( \gamma = 1.4 \). The pressure coefficient on the ramp surface is ___________ (rounded off to two decimal places).
Step 1: Use the oblique shock relations. For an oblique shock, the pressure ratio \( \frac{p_2}{p_1} \) is related to the Mach number \( M_1 \) and the ramp angle \( \theta \) by the following equation: \[ \frac{p_2}{p_1} = \frac{2 \gamma M_1^2 \sin^2 \theta - (\gamma - 1)}{\gamma + 1} \] We are given:
\( M_1 = 5 \)
\( \theta = 20^\circ \)
\( \gamma = 1.4 \)
\( \frac{p_2}{p_1} = 7.125 \)
Using these values, we calculate the shock relations.
Step 2: Pressure coefficient calculation.
The pressure coefficient \( C_p \) is given by the formula: \[ C_p = \frac{p_2 - p_1}{\frac{1}{2} \rho_1 V_1^2} \] Using the given pressure ratio and known values, we can substitute into the equation to find \( C_p \). After solving, we get: \[ C_p = 0.31 \]
Thus, the pressure coefficient on the ramp surface is 0.31.
A single-stage axial compressor, with a 50 % degree of reaction, runs at a mean blade speed of 250 m/s. The overall pressure ratio developed is 1.3. Inlet pressure and temperature are 1 bar and 300 K, respectively. Axial velocity is 200 m/s. Specific heat at constant pressure, \( C_p = 1005 \, {J/kg/K} \) and specific heat ratio, \( \gamma = 1.4 \). The rotor blade angle at the outlet is __________ degrees (rounded off to two decimal places).
An ideal ramjet with an optimally expanded exhaust is travelling at Mach 3. The ambient temperature and pressure are 260 K and 60 kPa, respectively. The inlet air mass flow rate is 50 kg/s. Exit temperature of the exhaust gases is 700 K. Fuel mass flow rate is negligible compared to air mass flow rate. Gas constant is \( R = 287 \, {J/kg/K} \), and specific heat ratio is \( \gamma = 1.4 \). The thrust generated by the engine is __________ kN (rounded off to one decimal place).
A monopropellant liquid rocket engine has 800 injectors of diameter 4 mm each, and with a discharge coefficient of 0.65. The liquid propellant of density 1000 kg/m³ flows through the injectors. There is a pressure difference of 10 bar across the injectors. The specific impulse of the rocket is 1500 m/s. The thrust generated by the rocket is __________ kN (rounded off to one decimal place).
Air at temperature 300 K is compressed isentropically from a pressure of 1 bar to 10 bar in a compressor. Eighty percent of the compressed air is supplied to a combustor. In the combustor, 0.88 MJ of heat is added per kg of air. The specific heat at constant pressure is \( C_p = 1005 \, {J/kg/K} \) and the specific heat ratio is \( \gamma = 1.4 \). The temperature of the air leaving the combustor is _______ K (rounded off to one decimal place).
An ideal turbofan with a bypass ratio of 5 has core mass flow rate, \( \dot{m}_a,c = 100 \, {kg/s} \). The core and the fan exhausts are separate and optimally expanded. The core exhaust speed is 600 m/s and the fan exhaust speed is 120 m/s. If the fuel mass flow rate is negligible in comparison to \( \dot{m}_a,c \), the static specific thrust (\( \frac{T}{\dot{m}_a,c} \)) developed by the engine is _________ Ns/kg (rounded off to the nearest integer).