By the given condition
$^{2n+1}C_{1}+\,^{2n+1}C_{2}+ ..........+\,^{2n+1}C_{4}=255$
Now $^{2n+1}C_{1}=\,^{2n+1}C_{2n} \, \left[\because \,^{n}C_{r}=\,^{n}C_{n-r}\right]$
$^{2n+1}C_{2}=\,^{2n+1}C_{2n-1}$
$^{2n+1}C_{n} =\,^{2n+1}C_{n+1}$
Adding these, we get
$^{2n+1}C_{0}+\,^{2n+1}C_{1}+\,^{2n+1}C_{2}+...........+\,^{2n+1}C_{n}$
$=^{2n+1}C_{n+1}+\,^{2n+1}C_{2n}+\,^{2n+1}C_{2n+1}$
$\Rightarrow 2\left[^{2n+1}C_{0}+\,^{2n+1}C_{1}+..........+\,^{2n+1}C_{n}\right]$
$=2^{2n+1}$