Question:

A state-space system is given by \[ \dot{x} = \begin{bmatrix}1 & -2 \\ 3 & -4\end{bmatrix}x + \begin{bmatrix}1 \\ 0\end{bmatrix}u, \quad y = \begin{bmatrix}1 & 2\end{bmatrix}x \] The controllability matrix [CM] is

Show Hint

Controllability Matrix = \( [B \quad AB] \). Multiply A and B correctly for second column.
Updated On: May 23, 2025
  • \( [CM] = \begin{bmatrix}1 & 2
    0 & 2\end{bmatrix} \)
  • \( [CM] = \begin{bmatrix}1 & -2
    0 & 1\end{bmatrix} \)
  • \( [CM] = \begin{bmatrix}0 & 1
    1 & 0\end{bmatrix} \)
  • \( [CM] = \begin{bmatrix}1 & 1
    0 & 1\end{bmatrix} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Controllability matrix: \[ CM = [B \quad AB] \] Given: \[ A = \begin{bmatrix}1 & -2 \\ 3 & -4\end{bmatrix}, \quad B = \begin{bmatrix}1 \\ 0\end{bmatrix} \] \[ AB = A \cdot B = \begin{bmatrix}1 & -2 \\ 3 & -4\end{bmatrix} \begin{bmatrix}1 \\ 0\end{bmatrix} = \begin{bmatrix}1 \\ 3\end{bmatrix} \] \[ CM = \begin{bmatrix}1 & 1 \\ 0 & 3\end{bmatrix} \] There seems to be a mismatch. If the provided answer is (B), verify the printed options again. However, based on standard calculation, the correct CM is: \[ CM = \begin{bmatrix}1 & 1 \\ 0 & 3\end{bmatrix} \]
Was this answer helpful?
0
0

Top Questions on Control Systems

View More Questions