Step 1: Static deflection due to weight.
At equilibrium under the mass weight:
\[
k \, \delta = Mg
\]
\[
\delta = \frac{Mg}{k}
\]
Substitute values:
\[
M = 4 \, kg, g = 9.81 \, m/s^2, k = 100 \, N/m
\]
\[
\delta = \frac{4 \times 9.81}{100} = \frac{39.24}{100} = 0.392 \, m
\]
Step 2: Time period of oscillations.
For a spring–mass system:
\[
T = 2\pi \sqrt{\frac{M}{k}}
\]
Substitute:
\[
T = 2\pi \sqrt{\frac{4}{100}} = 2\pi \sqrt{0.04} = 2\pi (0.2) = 1.257 \, s \approx 1.26 \, s
\]
Step 3: Interpretation.
Thus, the static deflection = $0.392$ m, and the time period = $1.26$ s.
Final Answer:
\[
\boxed{0.392 \, m \; \text{and} \; 1.26 \, s}
\]