Question:

A spherical $\beta$ particle nucleates from the $\alpha$ matrix on a non-deformable substrate $\delta$, forming a contact angle $\theta$ as shown. The value of $\dfrac{\Delta G^{}_{het}}{\Delta G^{}_{hom}}$ is _________. (Round off to three decimal places)
Given: $\alpha$–$\beta$ interfacial energy $= 0.4$ J/m$^{2}$ $\alpha$–$\delta$ interfacial energy $= 0.3$ J/m$^{2}$ $\beta$–$\delta$ interfacial energy $= 0.02$ J/m$^{2}$

Show Hint

Use Young’s equation to get the contact angle, then apply the spherical-cap reduction factor $f(\theta)$ for heterogeneous nucleation.
Updated On: Nov 27, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 0.057

Solution and Explanation

For heterogeneous nucleation of a spherical cap on a flat substrate, the ratio of heterogeneous to homogeneous nucleation energy is: \[ \frac{\Delta G^{}_{het}}{\Delta G^{}_{hom}} = f(\theta) \] where \[ f(\theta)= \frac{1}{4}(2+\cos\theta)(1-\cos\theta)^2 \] The contact angle is obtained from Young’s equation: \[ \gamma_{\alpha\delta} = \gamma_{\alpha\beta} \cos\theta + \gamma_{\beta\delta} \] Substitute values: \[ 0.3 = 0.4\cos\theta + 0.02 \] \[ 0.28 = 0.4 \cos\theta \] \[ \cos\theta = 0.70 \] Now compute the shape factor: \[ f(\theta)= \frac{1}{4}(2+\cos\theta)(1-\cos\theta)^2 \] \[ f(\theta)= \frac{1}{4}(2+0.7)(1-0.7)^2 \] \[ f(\theta)= \frac{1}{4}(2.7)(0.3^2) \] \[ f(\theta)= \frac{1}{4}(2.7)(0.09) \] \[ f(\theta)= 0.06075 \] Rounded to three decimals: \[ \boxed{0.061} \]
Was this answer helpful?
0
0

Questions Asked in GATE XE exam

View More Questions