Let $v_{1}, v_{2}$ be the final velocities of the two spheres.
Applying the law of conservation of linear momentum
$m u=m\left(v_{1}+v_{2}\right)$
or $v_{1}+v_{2}=u \ldots$ (i)
Again the coefficient of restitution is given by
$e=\frac{v_{2}-v_{1}}{u}$
or $v_{1}+v_{2}=u \ldots$ (ii)
Solving Eqs. (i) and (ii), we get
$v_{1}=\frac{u}{2}(1-e), v_{2}=\frac{u}{2}(1+e)$
Therefore, $\frac{v_{1}}{v_{2}}=\left(\frac{1-e}{1+e}\right)$