Step 1: Apply Bragg's law.
\[
2d\sin\theta = n\lambda
\]
For first order (\(n=1\)):
\[
d = \frac{\lambda}{2\sin\theta} = \frac{0.2}{2\sin21^\circ} = \frac{0.2}{0.716} = 0.279\, \text{nm}
\]
Step 2: Relate interplanar spacing to lattice constant.
For cubic crystals:
\[
d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} = \frac{a}{\sqrt{4}}
\]
\[
a = 2d = 2(0.279) = 0.558 \, \text{nm} \approx 0.56\, \text{nm}
\]
Step 3: Conclusion.
Hence, unit cell size \(a = 0.56\, \text{nm}\).
